打开APP
_getArticleList_v1764_0_50_10

看清活细胞里分子运动速度的快慢

 生命在于运动。不仅我们人类需要每天通过运动来增强体质,我们体内所有的生物大分子也无时无刻不以运动来维持生命的运转。在生物体内,分子的运动速度是用扩散速率来表征。它能提供例如细胞活性,反应速率以及大分子相互作用等重要信息。长期以来,活细胞内生物大分子的扩散速率通常使用经典光学方法例如荧光相关光谱(fluorescence correlation s

2020-03-19

研究人员开发神经密度可视化技术

 近日,中国科学院自动化研究所分子影像团队联合华科大同济医学院附属同济医院教授王良团队开发了一种前列腺癌神经密度可视化技术,实现了活体评估前列腺癌的神经密度,并可通过纳米颗粒负载神经功能阻断药物,抑制前列腺癌进展。该研究为临床前列腺癌神经的成像和治疗提供了潜在的依据,相关成果已发表在Science Advances上。前列腺癌是我国男性常见的恶性肿

2020-03-17

2020年3月13日Science期刊精华

2020年3月17日讯/生物谷BIOON/---本周又有一期新的Science期刊(2020年3月13日)发布,它有哪些精彩研究呢?让小编一一道来。图片来自Science期刊。1.Science:液-液相分离促进皮肤屏障形成doi:10.1126/science.aax9554; doi:10.1126/science.abb0060在一项新的研究中,来自美

2020-03-16

人源七聚体Pannexin 1通道的冷冻电镜结构研究取得进展

3月12日,Cell Research 期刊在线发表了题为《人源七聚体Pannexin 1通道的冷冻电镜结构》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室竺淑佳研究组与复旦大学生物医学研究院王磊课题组和中科院上海药物研究所余学奎课题组联合完成。细胞之间的交流是细胞发育及细胞稳态

2020-03-15

Science突破:开发新技术对免疫细胞微环境进行成像

2020年3月13日讯 /生物谷BIOON /——为了开发针对特定细胞表面蛋白的药物,了解它附近的其他蛋白是很有帮助的。许多疾病的病理可以通过阐明局部的生物分子网络或微环境来理解。为此,酶接近标记平台(enzymatic proximity labeling platform)被广泛应用于绘制亚细胞结构中更广泛的空间关系。然而,长期以来人们一直在寻找能够更精确

2020-03-13

Nature:对大脑的微观成像揭示介导神经血管的偶联的机制

2020年3月12日讯 /生物谷BIOON /——适当的脑功能依赖于神经血管耦合:神经活动迅速增加局部血流以满足区域脑能量需求的瞬间变化。神经血管偶联是脑功能成像的基础;神经血管偶联受损与神经变性有关。然而科学家们对神经血管耦合潜在的分子和细胞机制仍然知之甚少。传统观点认为,神经元或星形胶质细胞释放血管舒张因子,直接作用于平滑肌细胞(SMCs),诱导动脉扩张,

2020-03-12

Sci Rep:使用超声定位显微镜检测组织中的氧水平

2020年3月12日讯 /生物谷BIOON /——伊利诺伊大学厄巴纳-香槟分校的研究人员正在使用一种现有成像技术的新应用,这种技术可能有助于检测人类的肿瘤。这项技术,超分辨率超声定位显微镜,被用来观察血管分布和测量肿瘤中的氧气水平。这项研究是在鸡胚胎中进行的,但研究人员希望将这项研究扩展到人类。这项题为《Ultrasound localization micr

2020-03-12

2020年3月6日Science期刊精华

2020年3月11日讯/生物谷BIOON/---本周又有一期新的Science期刊(2020年3月6日)发布,它有哪些精彩研究呢?让小编一一道来。1.Science:科学家开发出能有效区分细胞中新旧基因转录物的新方法doi:10.1126/science.aax3072近日,一项刊登在国际杂志Science上的研究报告中,来自胡布勒支研究所等机构的科学家们通

2020-03-11

Cell新突破:将受体固定在癌细胞表面,免疫治疗精准打击

2020年3月10日讯 /生物谷BIOON /——一种安全可控的体内内吞操作可能具有破坏性的治疗潜力。为此,来自昆士兰大学的研究人员领导的研究小组证明了抗吐剂/抗精神病药丙氯哌嗪可被重新使用,以可逆地抑制治疗性单克隆抗体靶向的膜蛋白的体内内吞作用。研究人员在人肿瘤体外实验中直接证明了这一点。短暂的抑制内吞可增强靶细胞的可用性,并提高自然杀伤细胞介导的抗体依赖

2020-03-10

Nature:为什么新冠病毒在人群中如此容易传播?

研究人员已经确定了可能使这种病原体比SARS病毒更具传染性的微观特征,并可作为药物靶标。随着全球冠状病毒感染人数接近10万人,研究人员正在竞相了解是什么让它如此容易地传播。一些基因和结构分析已经确定了这种病毒的一个关键特征--表面的一种蛋白质--这也许可以解释为什么它如此容易感染人类细胞。其他研究小组正在研究新冠状病毒进入人体组织的途径--细胞膜上的受体。细

2020-03-10