建立EB病毒转化B淋巴母细胞系
Generating B-lymphoblastoid cell lines using Epstein Barr virus transformation. Generating immortalized B-lymphoblastoid cell lines via Epstein Barr virus transformation using the B95-8 EBV-infected and producing marmoset cell line.
患者教育视频:上消化道内窥镜检查
This video, created by Nucleus Medical Media, shows an upper GI (gastrointestinal) endoscopy procedure to diagnose helicobacter pylori, a bacterium (bacteria) that causes a stomach (gastric) ulcer. The animation also includes the treatment of a bleeding ulcer using endoscopic tools.
化学糖生物学 - Carolyn Bertozzi P1
本视频由科普中国和生物医学大讲堂出品
Carolyn Bertozzi (UC Berkeley) Part 1: Chemical Glycobiology
Part 1 A large part of an organism's complexity is not encoded by its genome but results from post-translational modification. Glycosylation, or the addition of sugar molecules to a protein is an example of such a modification. These sugars, or glycans, are often complex, branched molecules specific to particular cells. Cell surface glycans determine human blood types, allow viral infections and play a key role in tissue inflammation. See more at http://www.ibioseminars.org
头足纲动物的可变化的皮肤细胞 - Roger Hanlon P3
本视频由科普中国和生物医学大讲堂出品
Roger Hanlon (MBL) Part 3: Changeable Skin
Hanlon introduces the amazing adaptive coloration of cephalopods. He uses video and still photography to showcase their ability to rapidly change color, pattern and skin texture with fine control and a diversity of appearances, to produce camouflage or to send signals. He argues that all camouflage patterns in nature can be grouped into three types. In part 2, Hanlon shows us results from his lab that make a convincing case that the rapid adaptive coloration of cephalopods is controlled by their visual system; quite impressive for a color-blind animal! Part 3 focuses on the unique skin of cephalopods including the system of pigments and reflectors that allows it to quickly change to any hue and contrast, and the papillae musculature that allows the skin to deform and create multiple 3D textures.
控制老化的基因 - Cynthia Kenyon P1
本视频由科普中国和生物医学大讲堂出品
Cynthia Kenyon (UCSF) Part 1: Genes that Control Aging
Once it was thought that aging was just a random and haphazard process. Instead, the rate of aging turns out to be subject to regulation by transcription factors that respond to hormones and other signals. In the nematode C. elegans, in which many key discoveries about aging were first made, the aging process is subject to regulation by food intake, sensory perception, and signals from the reproductive system. Changing genes and cells that affect aging can lengthen lifespan by six fold, and can also delay age-related disease, such as the growth of tumors.
限制性内切酶消化
限制性酶或内切酶会识别并切开DNA上的某个特定序列。这些酶在细菌中天然存在,用来抵御感染细菌的病毒-噬菌体的攻击。细菌中的限制性内切酶会切开入侵噬菌体的DNA,而细菌本身的DNA由于有甲基化,将不会受到影响。
本短片讲述了限制性内切酶的基本原理:内切酶是如何命名的,已有的酶切位点和突出端类型。并将讲解常用的限制性内切酶消化的逐步操作过程,包括所需组分,添加各组分到混合物中的顺序,以及常用的消化温度和时间。还将提及灭活限制性内切酶来抑制非特异性活性的重要性。短片还给出了操作多酶消化及酶切中使用对照的小技巧。
凝胶纯化
胶纯化用于回收电泳分离的DNA片段。从琼脂糖凝胶中回收DNA包括三个基本步骤:在硅胶柱上进行结合,清洗和洗脱。高盐环境下,DNA会通过盐桥结合到硅胶上,清洗掉不纯的物质后,再用低盐条件破坏这种相互作用从而将DNA洗脱下来。
本短片讲述了常用胶回收的基本步骤,从胶中将DNA带切割出来,溶解胶,用硅胶柱结合并洗脱下纯化的DNA。此外,该短片还讨论了要保证胶回收成功的几个技巧,包括跑胶中用上已知分子量大小的DNA标准样的重要性。
质粒纯化
质粒纯化是将质粒DNA与基因组DNA、蛋白质、核糖体以及细菌细胞壁分离开的一种技术。质粒是小的环状双链DNA,用作特定DNA分子的载体。当质粒通过转化技术导入宿主细胞后,将被复制产生大量拷贝的DNA片段用于研究。
本短片讲述了常用的质粒纯化的逐步过程。质粒纯化包括三个基本步骤:细菌的培养,细菌的收集和裂解,质粒DNA的纯化。视频还解释了操作过程每一步中质粒在哪里会被发现,以及如何用分光光度计和电泳对质粒进行定量和纯度的分析。目前有多种质粒纯化的方法,可以根据所需质粒的产量,质粒的拷贝数目和细菌培养的体积来进行选择。
细菌转化:电穿孔法
"转化”这一术语是指细胞摄入外源DNA。自然界中,某些类型的细菌可以发生转化。而在分子生物学中,可通过在细菌细胞壁上穿孔来人工诱导转化。能够从环境中接受DNA的细菌细胞被称为感受态细胞。可在实验室制备电穿孔感受态细胞,并通过施加电场在细胞壁上形成小孔让DNA穿过来转化这些细胞。
本短片讲解了用于电穿孔转化的设备,如电转化仪和电击杯。视频也演示了如何制备电穿孔感受态细胞和用电穿孔转化目的细胞的逐步步骤。也提到了通过观察时间常量来估计转化实验是否成功和电穿孔时去除掉溶液中的盐离子的重要性。