打开APP

面向智能仿生感知系统的柔性人工突触研究取得进展

人工智能技术的发展为人机交互、仿生感知系统及智能机器人等领域带来革命性变化,同时也对复杂数据的处理和人机交互界面提出新要求。不同于目前基于软件系统和冯·诺依曼构架计算体系实现的神经网络,人脑运算方式具有高效率和低功耗的特点。因此,通过人工突触器件的制备,在硬件层面上模拟人脑的神经拟态器件,对构建新的计算系统具有重要意义。人工突触器件能够将传感器信号转变成类神

2020-09-21

基于可持续柔性水伏发电机的自供能可穿戴传感系统研究获进展

近十年来,随着智能柔性可穿戴设备在医疗健康监护、人机融合、人工智能等领域的广泛应用,柔性电子技术向智能化、集成化、多功能化的方向快速发展。尽管柔性电子器件在降低功耗方面取得了重要进展,但能源的供给和消耗依然是柔性电子发展最关键的限制因素,研究开发基于新型能源高效采集的自主式供电柔性传感器成为柔性智能电子的重要研究方向。众所周知,地球表面70%以上都被天然水体

2020-04-04

诺禾致源发布高通量测序领域首个多产品柔性智能交付平台Falcon

2020 年3月19日,,诺禾致源公司正式宣布面向全球推出高通量测序(NGS)领域首个多产品并行的柔性智能交付平台 Falcon。此次多产品柔性化智能产线的发布,突破了传统的 NGS 测序方式。同时,伴随智能交付平台的投产使用,也将有助于进一步定义行业内 NGS 测序标准,推动行业生态健康有序的发展。并为客户提

2020-03-19

自保护、人机互动柔性织物传感器研究取得进展

 可穿戴柔性电子器件,因其柔性/拉伸性、质轻、成本低、便携等特性,被广泛应用于人体运动/人体健康的实时监测、人机/脑机交互以及机器学习等领域。但目前仍存在灵敏度及响应速度较低、检测下限较高、检测范围较窄等问题,器件基础性能仍有待提高。同时,在真实的应用场景中,其亦存在稳定性、抗环境干扰能力不高,规模化生产困难等挑战。要解决这些问题,设计性能优异且多

2020-03-11

东南大学赵远锦教授课题组:可应用于柔性电子领域的仿生螺旋藤蔓微导线

 2019年6月19日,东南大学生物电子学国家重点实验室赵远锦教授课题组基于共轴毛细管微流控纺丝技术制备出包裹离子液体的螺旋仿生微导线,进而能够构成柔性可拉伸导电系统。受植物螺旋藤蔓启发,制备得到的包裹离子液体的螺旋微导线壳层为聚偏氟乙烯(PVDF),核层为具有导电性的离子液体,其螺旋形貌可通过调节流体流速实现调控,因而制备出的不同形貌的导线能够表现出不同的导电特性,并可进一步构建具有不

2019-08-01

柔性应变敏感材料研究取得进展

 随着柔性电子学的发展,轻、薄、柔的便携式、可折叠、可穿戴的柔弹性器件逐渐成为一大研究热点。其中,柔性传感器是应用最为广泛的柔性电子器件,在运动感应、健康监测、医疗诊断等方面均有广泛的应用前景。应变传感器的基本原理是将器件的应变变化转化为电信号进行输出,从而用于监测引起应变的应力信号,其最主要的性能参数包括灵敏度(通常用Gage factor(GF)、相对电阻变化与应变变化的比值来表征)

2019-03-06

柔性仿生传感器领域取得系列进展

 随着柔性电子学、材料科学及微纳加工技术发展,柔性/可穿戴电子技术近年来成为电子器件研究的重要领域。其中,能够实现对外界信号精确感知的高性能柔性可延展传感器是其中的基础性核心元器件之一。由于具有良好曲面共形特征及轻、柔、韧等特性,柔性传感器在人机交互、智能机器人、人工智能、可穿戴设备、医疗监测及运动健康等战略新兴领域具有广阔的应用前景。目前,科研人员在柔性电子器件研究中做出了很多创新性的

2019-03-04

百特即用型柔性容器预混eptifibatide(依替巴肽)获美国FDA批准

2019年03月12日/生物谷BIOON/--百特国际(Baxter International)近日宣布,美国食品和药物管理局(FDA)已批准即用型eptifibatide(依替巴肽),这是首个也是唯一一个以柔性容器呈现的预混依替巴肽产品。依替巴肽是百特广泛的即用型药物中的最新产品,旨在帮助提高患者安全性和支持药房效率,百特已将该产品立即推向美国市场。百特制药公司总裁Robert Felicel

2019-03-12

柔性仿生传感器领域取得系列进展

随着柔性电子学、材料科学及微纳加工技术发展,柔性/可穿戴电子技术近年来成为电子器件研究的重要领域。其中,能够实现对外界信号精确感知的高性能柔性可延展传感器是其中的基础性核心元器件之一。由于具有良好曲面共形特征及轻、柔、韧等特性,柔性传感器在人机交互、智能机器人、人工智能、可穿戴设备、医疗监测及运动健康等战略新兴领域具有广阔的应用前景。目前,科研人员在柔性电子器件研究中做出了很多创新性的工作,且该领

2019-03-03

柔性可穿戴电子皮肤方面取得系列进展

 电子皮肤可模仿人体皮肤对外界环境(包括对压力、温度及化学等刺激)的感知,因而可广泛应用于人工智能和医学诊断等领域。尽管近年来电子皮肤研究取得了长足进展,但仍然存在感应材料的响应灵敏度不足、稳定性和抗干扰能力较差及感应的范围窄等诸多问题,这些限制了其实际应用。要解决以上问题,选用具有优异性能的活性材料和设计合理的器件结构是关键。碳纳米材料(碳纳米管、石墨烯等)因其优越的物理、化学以及电学

2019-02-25