打开APP

Cell:通过分析受感染细胞的全局磷酸化图谱,揭示现有的激酶靶向药物有望阻止SARS-CoV-2劫持宿主细胞

2020年7月3日讯/生物谷BIOON/---在一项新的研究中,一个国际研究小组分析了SARS-CoV-2---导致COVID-19疾病的新型冠状病毒---如何劫持它的靶细胞中的蛋白。这项研究展示了这种病毒如何改变靶细胞的活性,从而促进它自身的复制并感染附近的细胞。他们还鉴定出7种临床上批准的可以破坏这些机制的药物,并建议立即在临床试验中测试这些药物。相关研

2020-07-03

酸化抗体使用建议,听听CST专家怎么说

WB磷酸化蛋白曝不出条带的时候,会特别沮丧,特别希望有人指点一二。在"CST抗体技术交流群"里,大家随时提问,同行或CST技术团队会热心解答。总结了下问题类型,不难发现,磷酸化抗体的使用,仍是许多人关心的重点,今天我们单独把它拎出来说一说吧。1.确定样本中磷酸化蛋白的表达量①对的样本,②正确的处理方法和③合适的阳性对照是实验成功的第一步。①实验前需先查阅文献

2020-06-11

Nature:揭示IgE抗体的唾液酸化修饰竟增强过敏反应的致病性

2020年5月25日讯/生物谷BIOON/---在一项新的研究中,来自美国麻省总医院等研究机构的研究人员发现过敏的一种潜在标志物和新的治疗策略,这可能有助于改善对这类疾病的诊断和治疗。相关研究结果于2020年5月20日在线发表在Nature期刊上,论文标题为“Sialylation of immunoglobulin E is a determinant o

2020-05-25

Fennec公司Pedmark(硫代硫酸钠)获美国FDA优先审查!

2020年04月15日讯 /生物谷BIOON/ --Fennec Pharmaceuticals Inc是一家专业制药公司,致力于开发Pedmark(独特配方的硫代硫酸钠),用于儿科患者预防由含铂化疗引起的耳毒性。近日,该公司宣布,美国食品和药物管理局(FDA)已受理Pedmark的新药申请(NDA)并授予了优先审查,同时指定处方药用户收费法(PDUFA)目

2020-04-15

研究揭示磷酸化修饰调控内质网应激早期应答新机制

 内质网(endoplasmic reticulum, ER)是真核细胞分泌蛋白和膜蛋白的折叠工厂。细胞内外环境的变化会引起ER稳态(包括蛋白质稳态、氧化还原稳态和钙稳态等)失衡。当ER的蛋白质折叠负担超过折叠能力时就会造成ER应激,此时ER膜上的三个跨膜“传感器”蛋白(IRE1、PERK和ATF6)可启动一系列从ER到核的信号转导途径,从而增强E

2020-03-12

Nat Biotechnol:“机器学习”帮助鉴定磷酸化位点

EMBL的欧洲生物信息学研究所(EMBL-EBI)的研究人员创建了迄今为止最大的参考磷酸化蛋白质组,将近120000个人类磷酸化位点。为了识别最重要的成员,他们使用了一种机器学习方法,能够根据功能重要性对其进行排名。

2019-12-13

揭示高盐饮食通过促进蛋白tau磷酸化损害大脑认知功能

2019年10月27日讯/生物谷BIOON/---在一项新的针对小鼠的研究中,来自美国威尔康乃尔医学院的研究人员发现高盐饮食可能会导致化合物一氧化氮的缺乏,从而对认知功能产生负面影响。当一氧化氮水平过低时,大脑中的蛋白tau发生磷酸化,从而导致痴呆症。相关研究结果于2019年10月23日在线发表在Nature期刊上,论文标题为“Dietary salt promotes cognitive imp

2019-10-27

酸化调节着RNA聚合酶II对不同凝聚物的偏好性

2019年8月17日讯/生物谷BIOON/---细胞通常产生区室来控制重要的生物功能。细胞核就是一个很好的例子;它被核膜包围着,容纳着基因组。然而,细胞还含有未被膜包围的较为短暂存在的封闭室,就像水中的油滴。在过去两年中,这些称为液滴状“凝聚物(condensates)”的封闭室已越来越多地被认为是控制基因的主要参与者。如今,在一项新的研究中,来自美国怀特黑德生物医学研究所的研究人员发现凝聚物在剪

2019-08-17

海洋优势固氮类群束毛藻对海洋酸化响应研究取得新进展

 在“全球变化及应对”重点专项的支持下,“海洋生态系统储碳过程的多尺度调控及其对全球变化的响应”项目团队在海洋优势固氮类群束毛藻对海洋酸化响应研究方面取得新进展。该专项中厦门大学史大林教授团队分析了束毛藻对海洋酸化响应的细胞生理及分子生物学实验数据,并在此基础上建立了一个束毛藻“资源最优化分配”细胞模型(图1)。该模型模拟束毛藻胞内铁和能量如何在无机碳吸收、光合作用、固氮作用、生命维持、

2019-06-06

Sci Rep: 抑制蛋白质磷酸化制促进损伤后的视神经再生

2019年5月22日 讯 /生物谷BIOON/ --早稻田大学Toshio Ohshima教授的一项新研究发现,抑制塌陷反应介质蛋白2(CRMP2)(一种微管结合蛋白)的磷酸化可以抑制神经纤维的退化,促进视神经损伤后的再生。最近在《Scientific Reports》杂志上发表的这项研究结果可以为视神经病变患者开发新型治疗方法。青光眼患者视野中会出现盲点,并且当视神经恶化时可能导致失明。神经纤维

2019-05-23