科研人员研发深度学习系统:可精准预测糖尿病视网膜病变进展
研究团队通过将该系统应用于中国和印度的真实临床流程,证实该系统可在大幅降低筛查频率和公共卫生成本的情况下仍保持极低的漏诊率,从而为将来的糖尿病并发症防控实践提供了个性化筛查和管理决策的依据。
2024-02-15
Nature头条报道:复旦团队利用蛋白组学和人工智能算法,通过血液检测提前15年预测痴呆症
这项发表于 Nature Aging 的研究可用于开发针对痴呆症的新型血液检测方法,通过人工智能算法在症状出现前十多年前甄别痴呆症高风险患者。
2024-02-16
应晓敏/伯晓晨团队开发基于生成式人工智能的新算法MIDAS,实现单细胞多组学数据的马赛克整合
研究提出了一种用于单细胞多组学数据马赛克整合及知识迁移的计算工具——MIDAS,首次实现了通用的单细胞多组学马赛克数据的模态对齐、数据补全、批次校正等整合功能。
2024-01-25
Cancer Cell:李博等开发机器学习算法,首次在单细胞水平追踪癌细胞和T细胞间线粒体传输
该研究不仅证实了T细胞与癌细胞间线粒体传输在不同癌症中的广泛存在, 更重要的是,提出了基于贝叶斯层次模型与统计反褶积的机器学习方法——MERCI,实现了在单细胞分辨率下追踪不同细胞间线粒体传输的重要功
2023-10-13