打开APP

光电一化芯片PCR领域取得进展

 作为基因检测的金标准,聚合酶链式反应(PCR)技术是一种重要的疾病检测工具。目前,众多疾病的临床检测均采用实时荧光PCR(RT-PCR)技术作为核心手段。但是,RT-PCR技术在灵敏度、检测限、分析成本以及基层诊断疾控普及等方面也存在着诸多不足。中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室研究员吴文明在长春光机所率先开展了聚合酶链

2020-05-28

Nature | XY性染色大不同,减数分裂配对时为何没出错?

大多数哺乳动物雄性中的性染色体只有一个很小的同源片段,这段区域被称为假常染色体区(Pseudoautosomal region, PAR),PAR区域正确发生DNA双链断裂、配对以及交换才能确保减数分裂的正常进行【1】。在小鼠减数分裂重组过程中,发生DNA双链断裂的PAR区域大小只有大约700kb【2】。在常染色体中平均每10Mbp发生一次DNA双链断裂,P

2020-06-03

肿瘤外泌microRNA高灵敏检测方面取得新进展

 国家纳米科学中心孙佳姝课题组在肿瘤外泌体microRNA高灵敏检测方面取得重要进展。相关研究成果“Thermophoretic Detection of Exosomal microRNAs by Nanoflares”于 2020年3月在线发表于《美国化学会志》(J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs

2020-05-26

研究揭示二甲双胍增强等离子肿瘤治疗

 近期,中国科学院合肥物质科学研究院健康与医学技术研究所韩伟团队在二甲双胍增强等离子体的肿瘤治疗研究方面取得进展,研究成果发表Journal of Physics D: Applied Physics。等离子体能显着抑制肿瘤细胞的增殖,被认为是一种新型肿瘤治疗方法。二甲双胍是临床上治疗2型糖尿病最常用的口服降血糖药,近年来研究发现二甲双胍在预防和治

2020-05-27

揭示确保较小染色在减数分裂中发生重组的机制

2020年5月15日讯/生物谷BIOON/---从鳄梨到面包酵母,从人类到斑马,有性繁殖的生物必须产生含有正常体细胞一半染色体的生殖细胞。当这些生殖细胞(如精子和卵子)在受精过程中结合在一起时,染色体数目就会恢复到正常的数量。产生生殖细胞的生物过程是一种称为减数分裂的细胞分裂。减数分裂的结果是,每个生殖细胞只含有正常体细胞的一半染色体。(在人类中,生殖细胞

2020-05-15

揭示蛋白酶在遭受应激时的相分离机制

2020年5月10日讯/生物谷BIOON/---蛋白酶体是一种主要的蛋白水解机器,通过选择性地降解泛素化蛋白来调节细胞中的蛋白稳态(proteostasis)。鉴于蛋白稳态的维持对人类健康至关重要,泛素-蛋白酶体系统(UPS)的失灵会导致癌症、炎症和神经变性等各种疾病。然而,人们迄今为止并不知道UPS背后的整体原理。在一项新的研究中,来自日本东京都医学科学研

2020-05-12

研究发现赖氨酸乙酰化修饰对细菌染色分离的调控机制

 近日,中国科学院深圳先进技术研究院合成所副研究员赵维与中国科学院分子植物科学卓越创新中心/植物生理生态研究所赵国屏团队在《核酸研究》(Nucleic Acids Research)杂志上发表文章"Deacetylation enhances ParB–DNA interactions affecting chromosome segregatio

2020-05-08

Nat Biomed Eng:研究开发新型快速SARS-CoV-2测试,基于新型等离子荧光体生物标记技术!

2020年5月4日讯 /生物谷BIOON /——圣路易斯华盛顿大学McKelvey工程学院的工程师们已经收到了联邦政府的资金,用于使用一种新开发的技术进行COVID-19快速测试。机械工程和材料科学教授Srikanth Singamaneni和他的团队开发了一种基于超亮荧光纳米探针的快速、高灵敏度和精确的生物传感器,该传感器具有广泛应用的潜力。这种被称为等离子

2020-05-04

Science:揭示Ccr4-Not复合物监测翻译中核糖的密码子最优性

2020年4月21日讯/生物谷BIOON/---受到严密控制的基因表达过程需要信使RNA(mRNA),mRNA代表着来自DNA的多肽蓝图,需要细胞的蛋白生产机器--核糖体---来翻译。因此,蛋白水平在很大程度上取决于细胞mRNA的水平,而控制mRNA的衰减是决定基因表达整体水平的最关键过程之一。mRNA的半衰期在不同转录本之间差异很大,对mRNA衰减率(mR

2020-04-21

Cell:揭示caspase-6是先天免疫、炎性激活和宿主防御的关键调节因子

2020年4月18日讯/生物谷BIOON/---在一项新的研究中,来自美国圣犹大儿童研究医院的研究人员鉴定出一种神秘的酶---caspase-6---的之前未知的功能。他们发现caspase-6是先天免疫、炎性体激活和宿主防御的关键调节因子。对caspase-6进行调控可能有利于治疗流感等病毒性疾病和包括癌症在内的其他炎症性疾病。相关研究结果于2020年4月

2020-04-18