研究揭示果蝇piRNA通路中Papi蛋白序列特异性识别Piwi蛋白在piRNA 3’端修剪过程中发挥生物学功能的分子机制
近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所黄旲研究组的研究成果,以Structural insights into the sequence-specific recognition of Piwi by Drosophila Papi为题,在线发表在PNAS上,该研究揭示了果蝇piRNA通路中Papi蛋白序列特异性识别Piwi蛋白并参与piRNA 3’端修剪的分子机制。piRN
内部的敌人:肠道细菌导致自身免疫性疾病
耶鲁大学的一项新研究表明,在老鼠小肠内发现的细菌可以传播到其他器官,引发自身免疫反应。他们说,研究人员还发现,可以用抗生素或疫苗来抑制自身免疫反应,目的是针对这些细菌。研究人员说,这项发表在《科学》杂志上的研究结果表明,这是有前景的治疗慢性自身免疫疾病的新方法,包括系统性红斑狼疮和自身免疫性肝病。肠道细菌与一系列疾病有关,包括免疫系统攻击健康组织的自身免疫状况。为了阐明这一联系,耶鲁大学的一个研究
传出内部消息:总局可能不拆分
刚刚传出内部消息:总局可能不拆分了!▍总局被拆分? 不一定“两会”前,食药监管体制的走向,就成为业界热议的话题。不少媒体纷纷报道,2018年,食药监管体制或将迎来新一轮改革。各种猜测在业内、外流传,风行一时。待到大会开始,全体通过《中共中央关于深化党和国家机构改革的决定》后,其中关于“深化行政执法体制改革”的内容,更引来诸多关于食药监总局,下一步走向的解读。言之确凿者有之、含糊其辞者也
生孩子或让母亲端粒衰老11年!
2018年3月11日讯 /生物谷BIOON /——一项由乔治梅森大学全球和社区卫生系的研究人员完成的新研究发现和没有生过孩子的女性相比,生过孩子的女性端粒更短。端粒是我们染色体上DNA末端的帽子,可以帮助DNA复制,但是会随着时间延长而变短。过去研究已经发现端粒的长度与发病率和死亡率有关,但是这项研究是第一项检测生孩子与端粒长度关系的研究。图片来源:PD-NASA; PD-USGOV-NASA他们
Cell:我国科学家从结构上揭示招募酵母端粒酶到端粒上机制
2018年1月28日/生物谷BIOON/---端粒是位于染色体末端的重复性DNA片段。细胞每分裂一次,它的端粒就会缩短一点。如果缺乏这些保护性的端粒,这种缩短将会破坏染色体,从而杀死细胞。在细胞中,一种被称作端粒酶(telomerase)的酶延长端粒。当胎儿细胞在早期发育期间快速地增殖时,存在于这些细胞中的端粒酶阻止DNA过度缩短,但是随后这些酶被关闭,端粒随着时间的推移而逐渐缩短,这是细胞自然老
空气污染会缩短新生儿端粒长度
2018年1月24日 讯 /生物谷BIOON/ --一项关于2004年中国铜梁火力发电站废气泄漏的相关影响的研究结果表明,在空气污染事件发生前出生的孩子相比空气污染治理后出生的孩子端粒酶明显较短。相关结果发表在《Environment International》杂志上。端粒是DNA的特殊结构,它能够保证染色体在细胞分裂过程中正常复制。然而,在细胞每轮复制的过程中,端粒都会一定程度缩短,导致基因组
研究揭示减数分裂过程中花束期端粒保护新机制
端粒是存在于真核细胞染色体末端的一小段DNA-蛋白质复合体,对于保持染色体的完整性和控制细胞分裂周期具有不可替代的作用。端粒长度反映细胞复制史及复制潜能,被称作细胞寿命的“有丝分裂钟”。端粒在减数分裂过程中发挥重要作用,减数分裂前期存在一个特殊的时相——花束期。此时,端粒聚集在细胞核内特定的区域,形成类似花束的结构,其对于程序性DSB的修复、同源染色体的联会,以及同源重组的
研究揭示TIN2复合物参与端粒保护的分子机制
近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所陈勇研究组、美国耶鲁大学Sandy Chang、上海交通大学雷鸣研究组合作,最新研究成果以Structural and functional analyses of the mammalian TIN2-TPP1-TRF2 telomeric complex为题,发表在Cell Research上,研究揭示了TIN
PNAS:DNA重复序列引发罕见运动障碍
2017年12月13日/生物谷BIOON/---最近,来自麻省总医院的研究者们发现了一类罕见的基因突变,或许能够解释罕见的神经紊乱疾病—“X染色体相关张力失常引发的帕金森症(XDP)”的发病原因。XDP患者主要有两类病征:张力失常以及帕金森症。这一发现发表在最近一期的《PNAS》杂志上,文章作者是来自麻省总医院神经学系的Nutan Sharma医生、Cristopher Bragg医生以及Laur
科学家阐明单个线粒体的首个DNA序列
2017年12月7日 讯 /生物谷BIOON/ --日前,一项刊登在国际杂志Cell Reports上的研究报告中,来自宾夕法尼亚大学Perelman医学院的研究人员通过研究发现,单一细胞中线粒体之间的DNA序列或许有很大的不同;本文研究能够帮助研究人员阐明单一线粒体突变积累所诱发的多种疾病背后的分子机制,同时也能帮助研究人员开发治疗多种疾病的新型疗法。图片摘自:Jacqueline Morris