打开APP

研究揭示RNA m6A修饰调控人干细胞衰老的新机制

 N6-甲基腺嘌呤(m6A)是真核生物RNA上较为常见的一类转录后表观修饰,其建立、擦除和识别分别受到m6A甲基转移酶(writer)、去甲基化酶(eraser)以及结合蛋白(reader)的动态调控。已有研究表明,m6A作为基因表达调控中的重要节点,通过调节靶RNA的出核、稳定性、选择性剪接和翻译过程,参与调控诸多生物学事件,而关于m6A在衰老特

2020-10-14

m6A修饰调控体细胞重编程机理研究获进展

9月8日,中国科学院广州生物医药与健康研究院陈捷凯课题组在Cell Reprots杂志在线发表了题为YTHDF2/3 are required for somatic reprogramming through different RNA deadenylation pathways的文章。该研究揭示了在体细胞重编程过程中,识别RNA m6A甲基化修饰的re

2020-09-10

bioRxiv:详解我国科学家开发出针对SARS-CoV-2的CAR-M细胞免疫疗法

2020年8月5日讯/生物谷BIOON/---2019年冠状病毒病(COVID-19)大流行,导致肺炎合并多器官疾病住院人数突然大幅增加,并导致全球超过30万人死亡。COVID-19由新型冠状病毒SARS-CoV-2引起,它是一种基因组为RNA的有包膜的β冠状病毒。SARS-CoV-2感染可能是无症状的,也可能引起广泛的症状,从轻微的上呼吸道感染症状到危及生

2020-08-05

Science子刊:利用M3mP6多肽高负荷纳米颗粒有望治疗心脏病

2020年7月23日讯/生物谷BIOON/---在一项新的研究中,来自美国伊利诺伊大学芝加哥分校的研究人员开发出一种新药,可以防止血凝块(blood clot),同时不会导致出血风险增加,而出血是目前所有抗血小板药物的常见副作用。相关研究结果发表在2020年7月15日的Science Translational Medicine期刊上,论文标题为“High-

2020-07-23

13部门发文支持新业态新模式健康发展

7月15日,国家发展改革委、中央网信办、工业和信息化部等13部门联合发布《关于支持新业态新模式健康发展激活消费市场带动扩大就业的意见》,其中提到,积极发展互联网医疗,以互联网优化就医体验,打造健康消费新生态。进一步加强智慧医院建设,推进线上预约检查检验。探索检查结果、线上处方信息等互认制度,探索建立健全患者主导的医疗数据共享方式和制度。探索完善线上医疗纠纷处

2020-07-16

Science:发现一种可靠的CRISPR/Cas13a系统抑制剂

2020年7月11日讯/生物谷BIOON/---对细菌和噬菌体(感染细菌的病毒)之间的进化军备竞赛的探索发现了各种防御机制,其中包括CRISPR-Cas(CRISPR相关核酶)适应性免疫系统。了解CRISPR介导的免疫防御机制(涉及DNA编码的RNA引导的序列特异性靶向入侵核酸)催生了基于不同Cas效应因子的强大基因组工程平台。随后的研究还发现了抗CRI

2020-07-11

利奥制药抗IL-13单抗tralokinumab:首个挑战赛诺菲Dupixent的生物药!

tralokinumab从阿斯利康授权获得,在欧盟和美国已进入审查阶段。

2020-07-11

新型佐剂3M-052可在体内诱导针对HIV的持久免疫力

2020年6月22日讯/生物谷BIOON/---在一项新的研究中,来自美国耶基斯国家灵长动物研究中心和埃默里疫苗中心的研究人员首次发现一种称为3M-052的新型佐剂有助于诱导针对HIV的持久免疫力。相关研究结果发表在2020年6月19日的Science Immunology期刊上,论文标题为“3M-052, a synthetic TLR-7/8 agoni

2020-06-22

研究揭示ULK1/ATG13调控有丝分裂期自噬及肿瘤生长的重要机制

中国科学院合肥物质科学研究院强磁场科学中心张欣课题组发现ULK1/ATG13调控细胞分裂期自噬及肿瘤生长的重要机制,相关论文以ULK1-ATG13 and their mitotic phospho-regulation by CDK1 connect autophagy to cell cycle 为题发表在生物学期刊PLOS Biology上。自噬和细胞

2020-06-16

靶向calcineurin-Hoxb13通路可让心脏细胞重焕青春,治愈心脏损伤

2020年5月9日讯/生物谷BIOON/---在一项新的研究中,来自美国德克萨斯大学西南医学中心的研究人员发现一种蛋白在心脏发育过程中与其他蛋白一起发挥作用来抑制心脏细胞分裂。这一发现最终可能被用来逆转这种抑制作用,帮助心脏细胞再生,从而为治疗一系列涉及心肌受损的疾病---包括由病毒、毒素、高血压或心脏病发作引起的心力衰竭---提供了一种全新的方法。相关研究

2020-05-09