研究发现一氧化氮响应环境变化诱导运动可塑性的精确机制
一氧化氮(NO)是一种气体信使分子,已被揭示在心脑血管调节、神经、免疫调节、运动能力等方面发挥重要作用。一氧化氮合成酶(NOS)是NO合成过程的关键限速酶,直接调控细胞中的NO含量。目前,在脊椎动物中已经发现三种NOS 编码基因(neural NOS, inducible NOS, epitheial NOS),其转录调控机制已被陆续报道。然而,在较低等的无脊椎动物中只发现了一种NOS编码基因,其
Nat Med:在人体肠道微生物组中发现一种可提高运动表现的细菌
2019年6月30日讯/生物谷BIOON/---人体肠道微生物组与许多人类健康和疾病状态有关。肠道微生物组的代谢谱(metabolic repertoire)是巨大的,但这些细菌代谢途径对健康的影响却知之甚少。在一项新的研究中,来自美国哈佛医学院、哈佛大学、加斯林糖尿病中心和布罗德研究所的研究人员鉴定出韦荣球菌属(Veillonella)的某些成员与运动表现存在关联性。相关研究结果于2019年6月
日常运动锻炼的好处真的好多!不信你看看这些研究!
近年来,科学家们通过研究发现,日常锻炼和运动对机体多个方面都有一定的健康效益,本文中,小编对相关研究成果进行整理,与大家一起学习!【1】想要有效预防老年痴呆?多锻炼 少吃维生素片!新闻阅读:What helps prevent dementia? Try exercise, not vitamin pills预防老年痴呆症的最新指南建议,如果你想拯救大脑的健康,可以通过专注于锻炼和健康的生活习惯来
“傲娇”的后顶叶皮层脑区: 只爱新刺激,不屑参与低级抉择?
走在路上,我们的大脑每时每刻都在进行着大大小小的抉择:分岔路口向左还是向右?怎么避开迎面而来的汽车?如何根据标识判断男女洗手间?根据以往的研究,这些抉择行为都与大脑后侧、顶部皮层中的神经元活动高度相关。可最近的多个研究结果发现,抑制后顶叶皮层的神经元并不影响动物在抉择行为中的表现,这在神经科学领域引发了广泛争议。近日,中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家
研究揭示初级纤毛在造血发育中的关键作用
众所周知,血液系统具有维持机体稳态的重要功能,对生物体的免疫防御和组织发育起到至关重要的作用。造血系统异常会引发诸多恶性血液疾病,如白血病、贫血和再生贫血障碍等。造血干细胞因具有自我更新和分化为各系血细胞的能力,而成为治疗多种血液疾病的核心组分。因此,造血干细胞的体内发育和体外诱导扩增已成为当今科学界的研究热点。在脊椎动物发育过程中,造血干细胞首先由主动脉腹侧壁的生血内皮通过内皮-造血转化过程产生
感知抉择皮层环路机制因果性研究获进展
4月29日,《自然-神经科学》期刊(Nature Neuroscience)在线发表了题为《后顶叶皮层在信息归类感知抉择中的因果性作用》的研究论文,该研究由中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室徐宁龙研究组完成。该研究从一个创新的角度解答了一个具有广泛争议的科学问题:后顶叶皮层及相关神经环路在抉择过程中发挥什么作用。后顶叶皮层(Posterior Parie
干细胞疗法成功改善脑损伤患者运动机能
日本一家生物制药公司尝试用干细胞修复受损脑神经组织获得成效,参与试验的患者运动机能得到改善。这家公司计划明年向日本厚生劳动省申请许可批量生产这种再生医疗产品。据《朝日新闻》8日报道,这家名为SanBio的创业公司主要研发再生医疗药品,日本再生医疗领域知名学者、庆应义塾大学医学部教授冈野荣之是科研团队成员。在这项新试验中,研究人员从健康人骨髓中提取出间充质干细胞并大量培养,制
科学家揭示纹状体脑区在运动学习过程中的神经机制
5月9日,中国科学院神经科学研究所、脑科学与智能技术卓越创新中心、神经科学国家重点实验室蒲慕明院士研究组在《美国科学院院刊》在线发表了题为《运动学习中背外侧纹状体直接通路和间接通路神经元稳定、独特的顺序性电活动的涌现》。该工作系统描述了背外侧纹状体直接通路和间接通路的同一群神经元在运动学习过程中的电活动变化,并且揭示了神经元集群的电活动如何经过学习依赖的时序重构最终形成独特、稳定的顺序
咖啡可以提高你的运动表现么?
2019年5月5日讯 /生物谷BIOON /——咖啡是世界上最受欢迎的饮料之一。澳大利亚近一半的成年人喝咖啡。除了享受咖啡的味道,我们喝咖啡的主要原因是为了让咖啡因进入血液。咖啡因可以帮助你保持清醒,提高警觉性,提高注意力,提高认知能力,提高短期记忆和解决问题的能力。它还可以提高身体性能。图片来源:https://cn.bing.com证据何在?在最近的一篇综述中,研究人员汇报了了所有荟萃分析的结
Sci Signal:关键蛋白缺失会抑制细胞的运动
2019年5月7日 讯 /生物谷BIOON/ --UConn研究人员在《Science Signaling》杂志上报告说,在其表面缺失某种蛋白质的细胞无法正常运动。该研究可以深入了解细胞如何移动和修复正常组织中的伤口,以及癌症如何通过身体传播。细胞是身体的工作者,他们经常需要四处走动才能完成工作。通常情况下,一个细胞将穿过一个组织 - 比如血管壁 - 就像攀岩者攀登悬崖的方式一样,使用一种叫做整合