打开APP

我国科学家成功研发出新型纳米光敏剂,用于肿瘤的光动力治疗

 肿瘤的光动力治疗是光敏剂在肿瘤组织选择性吸收和滞留,在利用特定波长的光激发后,产生活性氧自由基(ROS),达到杀伤肿瘤细胞的目的。与传统放化疗治疗肿瘤的方式相比,光动力治疗具有选择性高、不易产生耐药性以及副作用小等特点,在肿瘤的治疗中越来越受到关注。目前,临床上常用的光敏剂主要利用可见光进行激发,其组织穿透性弱,限制了光动力治疗在临床应用的范围和

2019-12-10

科研人员研发出全新人牙匹配型仿生义齿材料

义齿,也就是“假牙”,能够代替缺损或缺失的牙齿实现其正常的咀嚼、发声等功能,具有非常重要的实际意义和巨大的市场需求。氧化锆陶瓷具有良好的力学性能、生物相容性和耐腐蚀性,同时不会对影像学检查造成干扰,是目前应用最广泛、效果最好的义齿材料。然而,氧化锆全瓷义齿在制备加工以及实际应用中存在诸多问题。首先,氧化锆陶瓷的硬度是人牙釉质的4倍多,人牙本质的20倍左右,其模量也远高于人体正常牙齿,从而明显加速对

2019-11-16

微流控构筑微纳功能材料及其生物医学应用

  近日,中国科学院深圳先进技术研究院医工所纳米调控研究中心副研究员杜学敏(通讯作者)及其团队成员赵启龙(第一作者)、崔欢庆(共同第一作者)和王运龙在材料领域期刊Small上发表微流控构筑微纳功能材料及其生物医学应用综述,全面总结了基于微流控技术构建形态、形貌、结构、组成乃至性能精准可调的微纳功能材料的研究进展,并详细评述了这类材料在疾病诊断、药物递送、组织修复等多领域的应用和

2019-11-12

Nature Nanotechnology: 纳米颗粒药物递送可缓解疼痛并提供更有效的阿片类药物替代品

 近日,美国纽约大学和澳大利亚莫纳什大学等科研机构的科研人员在Nature Nanotechnology上发表了题为“A pH-responsive nanoparticle targets the neurokinin 1 receptor in endosomes to prevent chronic pain”的文章,开发出一种药物递送纳米粒子,能够把药物送入神经细胞的特定部位,极

2019-11-20

Nat Nanotechnol:纳米运送系统有助于缓解疼痛

2019年11月8日 讯 /生物谷BIOON/ --在最近一项研究中,科学家们使用纳米颗粒将一种用于治疗疼痛的药物(该药物在此前的临床试验中失败)送入神经细胞的特定部位,从而极大地提高了其治疗小鼠和大鼠疼痛的能力。研究结果于11月4日发表在《Nature Nanotechnology》杂志上。 “我们研究了一种FDA批准的抗呕吐药物,并使用新颖的给药方法,改善了其在炎性疼痛和神经性疼痛动

2019-11-08

铁蛋白纳米酶清除活性氧治疗实验性恶性脑疟研究获进展

   11月1日,Nano Letters 杂志在线发表了铁蛋白纳米酶通过靶向脑内皮细胞和调控纳米酶发挥清除活性氧功能,实现治疗恶性脑型疟疾的最新研究成果。研究人员首次利用铁蛋白对脑内皮细胞靶向和胞内亚定位特性,实现了对铁基纳米酶在脑部发挥过氧化氢酶活性的调控。结合铁蛋白对肝部巨噬细胞的极化调控特性,实现了对恶性脑型疟疾模型的有效治疗。这是中国科学院生物物理研究所阎锡

2019-11-05

近期纳米疗法研究新进展!

本文中,小编整理了多篇研究报告,共同剖析科学家们在纳米疗法研究领域取得的新成果,与大家一起学习!图片来源:Fars News Agency【1】Science子刊:纳米药物包裹的白细胞可以有效杀死手术过程脱落的癌细胞,成功防止术后转移doi:10.1126/sciadv.aaw4197范德比尔特大学(Vanderbilt University)的一名生物医学工程师发现,利用人体自身防御系统制造的细

2019-10-26

金基CT纳米示踪剂用于肺纤维化治疗过程中移植干细胞的示踪研究获进展

肺纤维化疾病是一种常见的进行性和致命性肺间质疾病,其主要特点是成纤维细胞过度地增殖和细胞外基质的过度沉积,从而导致正常的肺组织结构和功能被破坏。其发病机制尚不清楚,目前缺乏有效的治疗药物。据文献报道,间充质干细胞可以在受损组织部位被激活,通过旁分泌产生抑制纤维化和凋亡现象的基本因子,刺激宿主祖细胞修复肺损伤。但干细胞移植体内后的位置、分布及其存活状态尚不清楚。因此,急需开发一种非侵入性且可视化的影

2019-11-03

Nano Letter:纳米技术改善化疗传递,增强抗癌疗效

2019年10月23日讯 /生物谷BIOON /--密歇根州立大学(Michigan State University)的科学家发明了一种监测化疗药物浓度的新方法,这种方法能更有效地将患者的治疗控制在关键的治疗窗口之内。随着医学研究日益进展,对癌症患者进行化疗仍有很多问题。过高的剂量会导致健康组织和细胞死亡,引发更多副作用甚至死亡;过低的剂量可能会使癌细胞昏迷,而不是杀死它们,使它们在许多情况下变

2019-10-23

脑靶向核酸纳米传递系统研究取得进展

  10月11日,国际学术期刊Nature Communications(《自然-通讯》)在线发表了中国科学院广州生物医药与健康研究院巫林平课题组和英国纽卡斯尔大学教授Moein Moghimi研究团队共同合作,基于多肽的脑靶向纳米传递系统的最新成果“Crossing the blood-brain-barrier with nanoligand drug carriers s

2019-10-17